Chapter 4.7: Newton's Method

Newton's Method - Idea

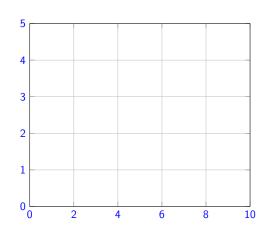
Goal:

Get approximation of roots. That is, solve f(x) = 0.

Idea:

It is easy to find a root of a line. If we have a reasonable guess, we can improve it by approximating f by a tangent line.

Use: Recall, for min/max of f, we need to solve f'(x) = 0.



Newton's Method - Formula

Outline of the method:

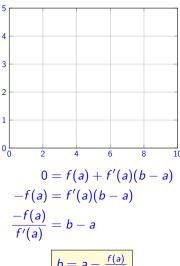
Start with an initial guess and keep improving it.

Good initial guess is important!

- \triangleright Start with initial guess x_0 .
- Repeatedly apply the following formula to get (hopefully) better approximations.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Stop when approximation is sufficient. Or after some number of steps, or if it starts exploding.



 $b = a - \frac{f(a)}{f'(a)}$

Example $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Example: Approximate $\sqrt{2}$ Set $f(x) = x^2 - 2$. Then f'(x) = 2x and

This method will not find the exact root, only (good) approximation.

so Newton's method becomes

$$x_{n+1} = x_n - \frac{(x_n)^2 - 2}{2x_n} = x_n - \frac{x_n}{2} + \frac{1}{x_n} = \frac{x_n}{2} + \frac{1}{x_n}$$

Let's start with
$$x_1 = 1$$
, then

 $x_2 = \frac{1}{2} + 1 = \frac{3}{2} = 1.5$

$$x_3 = \frac{3/2}{2} + \frac{1}{3/2} = \frac{17}{12} \approx 1.416$$

 $x_4 = \frac{17/12}{2} + \frac{1}{17/12} = \frac{577}{408} \approx 1.4142$

As we may know, $\sqrt{2}\approx 1.4142$ and so we have that 577/408 is a pretty good approximation of $\sqrt{2}$.

Example $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Example: Approximate $2x = \cos(x)$ starting with $x_1 = 0$.

Indeed, let $f(x) = 2x - \cos(x)$, then $f'(x) = 2 + \sin(x)$ and so Newton's method is

$$x_{n+1} = x_n - \frac{2x_n - \cos(x_n)}{2 + \sin(x_n)}$$

Starting with $x_1 = 0$ gives

$$x_2 = 0 - \frac{2(0) - \cos(0)}{2 + \sin(0)} = \frac{1}{2} = .5$$

$$x_3 = \frac{1}{2} - \frac{2(1/2) - \cos(1/2)}{2 + \sin(1/2)} \approx 0.4506$$

$$x_4 \approx 0.4506 - \frac{2(0.4506) - \cos(0.4506)}{2 + \sin(0.4506)} \approx 0.4501$$

Correct value is around 0.450184....

Example $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Example: Approximate $x^3 - x = 1$

starting with x = 1.

Set $f(x) = x^3 - x - 1$. Then $f'(x) = 3x^2 - 1$.

It looks like x_{n+1} does not have a nice

formula so we don't bother, and we make a table instead:

1.3478 | .10056 | 4.4496 | 1.32519/dots

The real solution is 1.3247.

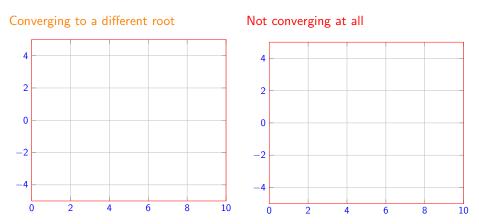
starting with $x=0$.				
Xn	$f(x_n)$	$f'(x_2)$	x_{n+1}	
0	-1	-1	$1 - \frac{-1}{-1} = -1$	
-1	-1	2	$-1 - \frac{-1}{2} = 0.$	
-0.5	625	-0.25	-3	
_		'		

Does not look good at all... Not

converging towards 1.3247...

Fails

Newtons method may fail in many ways, such as division by zero, converging to a different root, not converging at all or even diverging. Initial guess is important!



I promise that this is very rare and Newton's method is great!

47.

Failing example
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Try Newton's method for

$$f(x) = \sqrt{|x|}$$

with initial guess $x_1 = 1$. Note that

$$f'(x) = \frac{1}{2\sqrt{|x|}} \cdot \frac{x}{|x|} = \frac{x}{2|x|\sqrt{|x|}}.$$

Newton's method becomes

$$x_{n+1} = x_n - \frac{\sqrt{|x_n|}}{\frac{x_n}{2|x_n|/|x_n|}} = x_n - \frac{2|x_n|^2}{x_n} = x_n - \frac{2x_n^2}{x_n} = x_n - \frac{2}{x_n}$$

Starting with $x_1 = 1$ then yields

$$x_{2} = 1 - \frac{2}{1} = -1$$

$$x_{3} = -1 - \frac{2}{-1} = 1$$

$$x_{4} = 1 - \frac{2}{1} = -1$$